SQL functions execute an arbitrary list of SQL statements, returning
    the result of the last query in the list, which must be a
    SELECT.
    In the simple (non-set)
    case, the first row of the last query's result will be returned.
    (Bear in mind that "the first row" of a multirow
    result is not well-defined unless you use ORDER BY.)
    If the last query happens
    to return no rows at all, NULL will be returned.
   
    
    Alternatively, an SQL function may be declared to return a set,
    by specifying the function's return type
    as SETOF sometype.  In this case
    all rows of the last query's result are returned.  Further details
    appear below.
   
    The body of an SQL function should be a list of one or more SQL
    statements separated by semicolons.  Note that because the syntax
    of the CREATE FUNCTION command requires the body of the
    function to be enclosed in single quotes, single quote marks
    (') used
    in the body of the function must be escaped, by writing two single
    quotes ('') or a backslash (\') where each
    quote is desired.
   
    Arguments to the SQL function may be referenced in the function
    body using the syntax $n: $1 refers to
    the first argument, $2 to the second, and so on.  If an argument
    is of a composite type, then the "dot notation",
    e.g., $1.emp, may be used to access attributes
    of the argument.
   
     To illustrate a simple SQL function, consider the following,
     which might be used to debit a bank account:
CREATE FUNCTION tp1 (integer, numeric) RETURNS integer AS '
    UPDATE bank 
        SET balance = balance - $2
        WHERE accountno = $1;
    SELECT 1;
' LANGUAGE SQL;
     A user could execute this function to debit account 17 by $100.00 as
     follows:
SELECT tp1(17, 100.0);
    
     In practice one would probably like a more useful result from the
     function than a constant "1", so a more likely definition
     is
CREATE FUNCTION tp1 (integer, numeric) RETURNS numeric AS '
    UPDATE bank 
        SET balance = balance - $2
        WHERE accountno = $1;
    SELECT balance FROM bank WHERE accountno = $1;
' LANGUAGE SQL;
     which adjusts the balance and returns the new balance.
    
     Any collection of commands in the  SQL
     language can be packaged together and defined as a function.
     The commands can include data modification (i.e.,
     INSERT, UPDATE, and
     DELETE) as well
     as SELECT queries.  However, the final command 
     must be a SELECT that returns whatever is
     specified as the function's return type.  Alternatively, if you
     want to define a SQL function that performs actions but has no
     useful value to return, you can define it as returning void.
     In that case it must not end with a SELECT.
     For example:
CREATE FUNCTION clean_EMP () RETURNS void AS '
    DELETE FROM EMP 
        WHERE EMP.salary <= 0;
' LANGUAGE SQL;
SELECT clean_EMP();
 clean_emp
-----------
(1 row)
    
     The simplest possible SQL function has no arguments and
     simply returns a base type, such as integer:
     
CREATE FUNCTION one() RETURNS integer AS '
    SELECT 1 as RESULT;
' LANGUAGE SQL;
SELECT one();
 one
-----
   1
    
     Notice that we defined a column alias within the function body for the result of the function
     (with  the  name RESULT),  but this column alias is not visible
     outside the function.  Hence,  the  result  is labeled one
     instead of RESULT.
    
     It is almost as easy to define SQL functions  
     that take base types as arguments.  In the example below, notice
     how we refer to the arguments within the function as $1
     and $2:
CREATE FUNCTION add_em(integer, integer) RETURNS integer AS '
    SELECT $1 + $2;
' LANGUAGE SQL;
SELECT add_em(1, 2) AS answer;
 answer
--------
      3
    
     When  specifying  functions with arguments of composite
     types, we must  not  only  specify  which
     argument  we  want (as we did above with $1 and $2) but
     also the attributes of  that  argument.   For  example, suppose that
     EMP is a table containing employee data, and therefore
     also the name of the composite type of each row of the table.  Here
     is a function double_salary that computes what your
     salary would be if it were doubled:
CREATE FUNCTION double_salary(EMP) RETURNS integer AS '
    SELECT $1.salary * 2 AS salary;
' LANGUAGE SQL;
SELECT name, double_salary(EMP) AS dream
    FROM EMP
    WHERE EMP.cubicle ~= point '(2,1)';
 name | dream
------+-------
 Sam  |  2400
    
     Notice the use of the syntax $1.salary
     to select one field of the argument row value.  Also notice
     how the calling SELECT command uses a table name to denote
     the entire current row of that table as a composite value.
    
     It is also possible to build a function that returns a composite type.
     This is an example of a function 
     that returns a single EMP row:
CREATE FUNCTION new_emp() RETURNS EMP AS '
    SELECT text ''None'' AS name,
        1000 AS salary,
        25 AS age,
        point ''(2,2)'' AS cubicle;
' LANGUAGE SQL;
    
     In this case we have specified each of  the  attributes
     with  a  constant value, but any computation or expression 
     could have been substituted for these constants.
     Note two important things about defining the function:
     
- 	The  target  list  order must be exactly the same as
	that in which the columns appear in the table associated
	with the composite type.  (Naming the columns, as we did above,
	is irrelevant to the system.)
        
- 	You must typecast the expressions to match the
	definition of the composite type, or you will get errors like this:
 - ERROR:  function declared to return emp returns varchar instead of text at column 1 - 
        
    
     A function that returns a row (composite type) can be used as a table
     function, as described below.  It can also be called in the context
     of an SQL expression, but only when you
     extract a single attribute out of the row or pass the entire row into
     another function that accepts the same composite type.  For example,
SELECT (new_emp()).name;
 name
------
 None
     We need the extra parentheses to keep the parser from getting confused:
SELECT new_emp().name;
ERROR:  parser: parse error at or near "."
    
     Another option is to use
     functional notation for extracting an attribute.  The  simple  way 
     to explain this is that we can use the
     notations attribute(table)  and  table.attribute
     interchangeably:
SELECT name(new_emp());
 name
------
 None
--
-- this is the same as:
--  SELECT EMP.name AS youngster FROM EMP WHERE EMP.age < 30
--
SELECT name(EMP) AS youngster
    FROM EMP
    WHERE age(EMP) < 30;
 youngster
-----------
 Sam
    
     Another way to use a function returning a row result is to declare a
     second function accepting a row type parameter, and pass the function
     result to it:
CREATE FUNCTION getname(emp) RETURNS text AS
'SELECT $1.name;'
LANGUAGE SQL;
SELECT getname(new_emp());
 getname
---------
 None
(1 row)
    
     A table function is one that may be used in the FROM
     clause of a query. All SQL language functions may be used in this manner,
     but it is particularly useful for functions returning composite types.
     If the function is defined to return a base type, the table function
     produces a one-column table.  If the function is defined to return
     a composite type, the table function produces a column for each column
     of the composite type.
    
     Here is an example:
CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES(1,1,'Joe');
INSERT INTO foo VALUES(1,2,'Ed');
INSERT INTO foo VALUES(2,1,'Mary');
CREATE FUNCTION getfoo(int) RETURNS foo AS '
    SELECT * FROM foo WHERE fooid = $1;
' LANGUAGE SQL;
SELECT *, upper(fooname) FROM getfoo(1) AS t1;
 fooid | foosubid | fooname | upper
-------+----------+---------+-------
     1 |        1 | Joe     | JOE
(2 rows)
     As the example shows, we can work with the columns of the function's
     result just the same as if they were columns of a regular table.
    
     Note that we only got one row out of the function.  This is because
     we did not say SETOF.
    
     When an SQL function is declared as returning SETOF
     sometype, the function's final
     SELECT query is executed to completion, and each row it
     outputs is returned as an element of the set.
    
     This feature is normally used by calling the function as a table
     function.  In this case each row returned by the function becomes
     a row of the table seen by the query.  For example, assume that
     table foo has the same contents as above, and we say:
CREATE FUNCTION getfoo(int) RETURNS setof foo AS '
    SELECT * FROM foo WHERE fooid = $1;
' LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
 fooid | foosubid | fooname
-------+----------+---------
     1 |        1 | Joe
     1 |        2 | Ed
(2 rows)
    
     Currently, functions returning sets may also be called in the target list
     of a SELECT query.  For each row that the SELECT
     generates by itself, the function returning set is invoked, and an output
     row is generated for each element of the function's result set. Note,
     however, that this capability is deprecated and may be removed in future
     releases. The following is an example function returning a set from the
     target list:
CREATE FUNCTION listchildren(text) RETURNS SETOF text AS
'SELECT name FROM nodes WHERE parent = $1'
LANGUAGE SQL;
SELECT * FROM nodes;
   name    | parent
-----------+--------
 Top       |
 Child1    | Top
 Child2    | Top
 Child3    | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)
SELECT listchildren('Top');
 listchildren
--------------
 Child1
 Child2
 Child3
(3 rows)
SELECT name, listchildren(name) FROM nodes;
  name  | listchildren
--------+--------------
 Top    | Child1
 Top    | Child2
 Top    | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)
     In the last SELECT,
     notice that no output row appears for Child2, Child3, etc.
     This happens because listchildren returns an empty set
     for those inputs, so no output rows are generated.